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Non-stationary MHD interaction of a horizontal magnetic field with a three-dimen- 
sional cellular convection is studied by means of computational methods and methods 
of mean field electrodynamics. 

For a given magnetic field drop across the convective layer, the rate of magnetic 
flux penetration through this layer is characterized by two integral coefficients: the 
first one describing the topological pumping effect arises from the antisymmetric 
part of the a-effect, while the second coefficient accounts for the enhancement of the 
effective diffusion due to  the convective motions. I n  the magnetic-Reynolds-number 
range studied ( -  5 < R, < 5 )  these coefficients are found to be, correspondingly, odd 
and even functions of R, only. The net magnetic flux escape rate into vacuum de- 
creases a t  R, > 2.2 when compared with a case of a layer without cellular motions. 
Here the topological pumping prevails not only over the convective enhancement of 
diffusion but begins to suppress even the background diffusion action. 

Thus, the asymmetry in the transport properties of cellular motion is again demon- 
strated, and their difference from those of random turbulence is identified. 

1. Introduction 
The interaction of a magnetic field with three-dimensional cellular (BBnard) con- 

vection of a conducting fluid was shown by Drobyshevski & Yuferev (1974; herein- 
after referred to  as I) to  be essentially different from the interaction with irregular 
turbulence. Physically, this difference is due to the topological properties of such 
convection, when flows of the liquid in one direction form a continuous mesh which 
traps in its cells flows of opposite direction isolated from one another. As a result, the 
transfer of continuous magnetic tubes of force occurs differently from that of a scalar 
admixture. The flows making up a continuous mesh are capable of trapping and 
transporting the tube of force as a whole. Opposite discrete flows cannot carry back 
the tube of force as a whole, and instead tear off from it closed loops which do not 
carry net magnetic flux. Thus, a three-dimensional convection layer operates as a 
pump creating and maintaining a magnetic-field drop between the base and the 
surface of the layer. 

Generally speaking, it is clear that  any asymmetry in the flow or parameters of a 
conducting liquid within a layer should result in some pumping or enhanced escape 
of magnetic field despite the absence of net mass motion (I, p. 40). Similar effects 
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FIGURE 1. Solid lines : fst, the steady-state ratio of magnetic fields below and above the B6nard 
layer, ws. R,; 1, h, = h,-b  = 0 (see I) ;  2, hl, b (for an explanation of hl,2 see figure 2). 
Dashed line : approximation logf,, = - 0.09 + 0.142 R,. 

were analysed by Proctor (see Moffatt 1976), Radler (1976), Drobyshevski (1977), 
Krause (1978), Vainshtein (1978), and Ruzmaikin & Vainshtein (1978). 

The existence of the topological pumping effect was demonstrated in I by a straight- 
forward numerical calculation of the stationary-field distribution in a layer with a 
given motion structure. H. K. Moffatt, in an appendix to I (see also Moffatt 1978), 
confirmed the validity of these results fop magnetic Reynolds numbers R, 4 1 using 
the methods of mean-field electrodynamics and showed the topological pumping to 
be a third-order effect relative to R,. Radler (1976) showed that this effect can also 
be described in terms of the ordinary a-effect, namely, its antisymmetric part (see 
Moffatt 1978, p. 150). Besides, Moffatt (1978) pointed out that for description of the 
strong concentration of the magnetic flux to the lower-layer boundary a t  R, % 1 
one might try to apply boundary-layer methods. 

Calculation of the steady-state field distribution in a layer yields the magnitude of 
the relative magnetic field drop - fSt produced and maintained by pumping (figure 1, 
f S t  is equal to the stationary equilibrium ratio of the magnetic field strengths below 
and above the layer). To derive numerical estimates, one should know also another 
parameter of the ‘pump’, viz. its efficiency, i.e. the rate of magnetic field pumping 
or escape through the layer as a function of the field drop a t  the given moment. 

Parker (1975) attempted to  estimate the rate of magnetic field escape through a 
cellular convection layer. He considered a specific case of a zero field on one side of 
the layer and came to the conclusion that in this case, topological pumping cannot 
totally retain the magnetic flux in a half-space a t  a finite conductivity of the medium. 
This result is not inconsistent with results to be presented here, since at  finite R ,  
the effect creates and maintains across the layer a finite (rather than infinite) magnetic 
field ratio. 

Having in mind a turbulent medium, Parker concluded that the time characteristic 
of magnetic flux loss in this case should be determined by the magnitude of the turbu- 
lent diffusion coefficient D, z 0.1 vl: 

rR M L2/D, (1)  
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FIGURE 2. Geometry under study: the field B, diffuses through the Bknard layer (0 < 2 < b )  
from region I into region 11, giving rise to the field B, there; 2 = -hl ,  2 = h, are super- 
conducting boundaries. 

where v and 1 are the characteristic turbulence velocity and scale, and L is the size 
of the body. It is difficult to agree with this conclusion because the topological asym- 
metry of the velocity field should inevitably lead to asymmetry in the transport 
properties of the system which is in no way expressed by the estimate ( 1 ) .  

The present work deals with effective transport properties of a cellular convection 
layer with respect to a magnetic field parallel to the layer. Computational methods 
and methods of mean field electrodynamics are used to study the integral character- 
istics of magnetic flux penetration through a convective layer. An symmetry in the 
transport properties of cellular convection is again demonstrated. 

2. Formulation of the problem 
To describe the process of magnetic field penetration (or escape) through a plane 

layer one should, in general, solve a non-stationary problem. Consider the process 
involved in the simplest geometry of figure 2. 

A part of space, - h, < Z < h,, is bounded by superconducting walls. The layer 
0 < Z < b contains a conducting medium residing in a state of BBnard convection. 
Outside this layer is vacuum. The 02 axis is the axis of one of the convective cells. 
The O X  axis lies in the plane of the figure, and 0 Y axis is normal to it. 

Just as done earlier (see I), we assume the velocity field in the BBnard layer to be 
given, and not to be subjected to the back reaction of the magnetic field. This is valid 
provided the convective velocity is much higher than the Alfvh velocity (as, for 

3-2 
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example, on the Sun, outside active regions). Let 
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v = ~ [ - s i n x ( 1 + ~ c o s Y ) c o s z ,  

-(I+&cos X)sin YcosZ, (cosX+cos Y+cosXcos Y)sinZ]. (2) 

Here X, Y ,  2 are relative to some length scale L. With these variables, b = n, the 
central convective cell occupying the space 

O < Z < n ,  - n < x < n ,  - T r <  Y < n .  

One can consider various situations. One may, for instance, specify the initial 
homogeneous field B,,(B,,,, 0,O) in region I ( - h, < Z < 0) and follow the decrease 
of the field B, and its flux @, = B, h, and the appearance and increase of the field B, 
and flux a2 = B,(h,-b) in region I1 (b < Z < h,). (Here B, and B,-X components 
of the magnetic field outside the BBnard layer averaged in plane Z = constant. We 
define below f as f = B,/B,; but keeping for convenience fst 2 1, we have to put in 
the stationary case fSt = B,/B, if B, > B,, but fqt = B,/B, if B, < B,.) 

In  regions I and I1 the magnetic field is defined by equations 

[VxB]=O, V . B = O  

or introducing the scalar potential $: 

B = V$, V2$ = 0. (3) 

The behaviour of the magnetic field in a convective layer in the velocity field 
specified is fully described by the following equations 

( 4 )  -- a B -  V2B+R,[Vx(VxB)], V .B  = 0. 
at 

Here RwL = VL/D, the quantity rD = L2/D is chosen as a time scale, while D, assumed 
to be constant, is the background magnetic diffusivity of medium and is taken as a 
diffusion coefficient scale. When the convection is laminar, D = (,u,,g)-l, CT is the 
conductivity, and ,uo = 4n x lo-' (S.I. units). When the regular cellular motions are 
superimposed onto a small-scale random turbulence, D = D, z 0 .1~1 ,  v and 1 are 
velocity and space scales of this turbulence. The magnetic Reynolds number R, can 
take on negative values corresponding to a reversal of the velocity field. Because of 
the length-scale, R, here is n times that of paper I. 

Below, the exact numerical solution of equations (3) and (4) will be carried out. 
However, to do estimations of the generation rate of magnetic field, of its dissipation, 
etc., under various conditions there is no need to know all the fine details of the field 
interaction with the moving medium at every moment. As a rule, it is enough for this 
purpose to know some mean integral parameters characterizing the process. 

So, the magnetic field penetration through the BBnard layer, in the presence of 
topological pumping (see figure 2),  when the averaged field has only one component 
Bx(Z)  in the layer, can be described in terms of mean-field electrodynamics (Moffatt 
1978) making use of the averaged equation (4) 
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where &, = R,[V x B'], - an effective e.m.f., B' - the magnetic field perturbation due 
to the fluid motion. Hence, one can see that the quantity 

aBz 
4 =  --+&, az 

describes a transport Jlux of the averaged field through the convective layer. 

problem formulated above. I n  the general case (e.g. Radler 1976)) 
If the dependence of &, on B, were known, then one would get the solution of the 

4 = Ion K(Z> C) B X K )  dC. 

But since in our case the space scale of the field B, is the same as the scale of the 
velocity, i.e. the convective-layer thickness, we cannot express 8JZ) in the local form 

(7) 
aBx 

8JZ) = aB,(Z) -p- az 
appropriate for small scale-turbulent fields. (Here the first term to the right describes 
the a-effect, and the second the enhancement of the diffusion transport. The pumping 
effect of interest to us arises from the antisymmetric part of the a-effect (Radler 1976; 
Moffatt 1978); below we shall designate this part by -7.)  

However, when the transport process is quasistationary (hl ,2  B b ) ,  the transport 
flux qi will be practically constant across the layer (qi -d@,/dt z d@,/dt). If this 
is the case, then one can attempt to express this flux in terms of an expression which 
is analogous to (7) but depends on the mean field values at the convective layer boun- 
daries only. So, the main aim of the present work is to look for such a description based 
on the exact numerical solutions of the full equations (3) and (4). 

3. Boundary conditions and method of numerical solution 
At Z = 0 and Z = 71 the solutions of equations (3) and (a), due to the absence of 

surface currents, should satisfy the conditions of magnetic field continuity a t  the 
interface between two media 

The boundary conditions for our problem are determined by the existence of super- 
conducting walls: 

at Z = -hl, h,: (9) 

Since the problem is periodic in X and Y ,  we shall look for a solution in the form 
of a series 

m 

i, j = O  
B, = 2 B~jcos( ix)cos( jY) ,  

00 

B, = 2 BYj sin (iX) sin ( j Y ) ,  
i, j - 0  

03 

B, = Bfjsin(iX)cos(jY). 
i, j = O  
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Note that at i = 0,  j = 0 the only non-zero component is Bg0, and it is this component 
which determines the average magnetic field over the cell cross-section normal to  
the 02 axis (i.e. B:,, = Bz). 

Using equations (lo), the set (4) can be transformed to 

where 
$'$ = (B.V&-V.VB,)ij, vz = (i2+j2)*. 

The equations for Bfj and Bqj are of a similar form. 
For the non-conducting regions I and I1 one can find a solution in explicit form 

Using the conditions (9),  one readily obtains the following conditions that are valid 
at the boundaries of the convective layer 

Here 

This implies that the stationary relative drop fSt of magnetic field across the BQnard 
layer should, generally speaking, depend on the values of hl, e. 

Taking into account (8), equations (13 )  provide boundary conditions for the set of 
transport equations (1 1) for all field components with W L  $; 0. To obtain boundary 
conditions for B:o, we proceed in the following way. First, we note that in vacuum 
Bg0 = Bl,2 (functions o f t  only). Next, we integrate the Maxwell equation 

?!% = - [V x El, 
at 

over the volume of each non-conducting region (within one cell). Then, because of 
symmetry of the problem and the presence of superconducting walls, we obtain 

-- E,IZ=,dXdY, 
at 
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Since a t  boundaries V ,  = 0, 

we have finally : 

a t Z = O + ,  
at h, 

1 aB& (v, 4 ) O O  - - - at h2-T h2-n- az - 
a t Z = n - - ,  aB& -=-- Rnl 

7 1  

Comparing (6) with ( l a ) ,  we obtain 

W O  aB2 at 2 = n, - (h,-n) = - (h2-7r) = $. 
at at 

With our boundary conditions the net magnetic flux of the X component remains 
constant: 

B, d Y d 2  = @,, = const. 
@x = 1:. s:, 

while similar fluxes in each of regions I and I1 vary. 
Equations ( 1  1) with boundary conditions (13)-( 14) were solved by the finite- 

difference method using the Crank & Nicolson (1947)  technique, with all i , j  > N 
harmonics assumed to  be zero. The magnitude of AT was chosen such that the higher 
harmonics be sufficiently small. 

Since boundary conditions (13)-( 14) are uniform, we added in each iteration of each 
step in time to B& a correction 

W o  = (@a - @.,)/(h2 + hl), 

in order to maintain the total flux a0 constant. 

4. Magnetic flux behaviour at lRml < 1 

Before turning to  a discussion of the results of our calculations, we consider some 
conclusions which may be derived by the methods of mean-field electrodynamics by 
looking for a solution in a form of a series in powers of small R,, similar to that used 
by Moffatt (Appendix to  Drobyshevski tk Yuferev 1974)  to  support the existence of 
the topological pumping phenomenon. 

The problem of the field transport can be studied in the steady-state version when 
hl,2 --i\ 00, so that  the ratio f = B2/Bl specified for the B& harmonic a t  the BBnard 
layer boundaries remains constant indefinitely. LTnder these conditions, the con- 
tinuous transport of field from one region in another takes place. 

Performing double integration of (1 1)  for B& and taking account of the expressions 
(15) we obtain 

#lz=o,n = -~ [(4B,”,+4Bi”,+2B3sinZ+4(B~0+B~1) cosZ]dZ. (17)  
B2-Bl R, n 

n 
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To calculate integrals in the preceding expression we again integrate ( 1  1 a )  for corre- 
sponding harmonics. Then we have 

$Iz=o,n = -~ Bz - B1 + jon ( W;, sin 2 + $Ff, sin Z + $F:, cos 2) d2.  
n 

Introducing here expressions (1 1 b)  for Fij we get 

+ terms containing harmonics with i, j > 1. 
Now we expand B in a series in powers of R, 

m 

k = O  
B =  RmkBk 

where 

and B, has only one X component 

- V2Bk+l = [v X [v X Bk]] 

Correspondingly for transport flux 4 we have 
m 

$ =  Rmk$k- 
k=O 

Obviously, $, = - (B,  - Bl)/7r and 4, = 0. The magnitude of $, is found easily by 
substituting ( 2 2 )  in (19). Hence 4, = 7$,/48. 

To determine q53 one has to find B, from (21). It is enough to get only particular 
solution because the general solution of this equation does not give a contribution 
into expression (19). Then, after simple but tedious transformations we find B,, and 
finally 

- 5  B, + B, 43 = 7 2 7 .  
Thus 

and in a-effect language (see (6) and (7)),  one can write the transport flux at IR,l 4 1 
in form 

where 
(B)  = *(B,+B,)  = W,(1 +f), 

( d B / d Z )  = ( B Z - B l ) / n  = B,(f- l ) / n ,  

1 + ,8 = 1 + &R+,,Z + even powers of R, terms, 

y = 36 Rm3 + odd powers of R, terms. 

This result immediately implies that the field transport through the BBnard layer 
depends on the direction of motion (R,  2 0 )  and the magnitude of the relative field 
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drop f. At R, < O(0 < f < l), when the velocity a t  the cell axis is negative, the motion 
favours field escape and the latter increases monotonically with increasing I Rml . I n  
the opposite case of R, > O(0 < f < l), the rate of the field escape increases only at 
small R, when the second (even) harmonic is essential and the convective transport 
of the field ( = ‘turbulent ’ or, more strictly, ‘ convective ’ diffusion) prevails over the 
a-effect action. At R, z 1.4( 1 - f )/( 1 + f ), $ reaches a weak maximum after which 
the topological confinement of the field becomes dominant and the rate of the field 
escape begins to decrease (for further details see 5 5 and figure 5 ) .  

These inferences are in qualitative agreement with the results of Weiss (1 966), who 
found that the even harmonic movements expel the field out of medium, and also 
with the results of Proctor (see Moffatt 1976, 1978)’ who showed that a t  R, B 1 two- 
dimensional (even) effects become inessential and the influence of the three-dimen- 
sional motions should be most effective here. 

Note also, that  both p and y are functions of R, ( < 1)  only, not f. 

5. Results of computations at I R,I 2 1 : The effective values of the pumping 
rate y and the convective diffusion p 
Numerical calculations permit one to study magnetic field behaviour in a BBnard 

layer at lRml > 1 when the presentation of solution in the series form (23)-(24) 
becomes invalid. 

Calculations were performed with h,,, + b = n to meet the condition of the field 
distribution quasi-stationarity in the layer. We investigated cases h, = h,-n = 50 
at different f = B,/B,; to simulate the field escape into vacuum, where B, = O( f = 0), 
a series of runs was done a t  h, = 102, h, = 104 and B, = 0 at t = 0, the initial stage of 
process being considered when f < 1. To make the process reach the quasi-stationary 
diffusion mode as fast as possible (before the field in region I1 has attained a notice- 
able level), the initial field distribution inside the layer was assumed to be linear, 

We are interested here mainly in integral characteristics of the process and therefore 
in contrast to paper I, we will not go into details of the field distribution inside the 
BBnard layer. I n  the initial stages, motions inside the layer rebuild strongly the field 
configuration pushing some part of the magnetic flux out of the layer (dominantly in 
the direction of pumping). But by time t = 3, practically quasi-stationary conditions 
are reached. Here the field distribution in the layer depends strongly on the direction 
of motion in the cells. For R, < 0 the averaged magnetic field distribution in the 
layer is closer to the linear one and the gradients V,B, near the boundaries are larger 
than those for R, > 0 (figure 3). Since near the boundaries the field transport occurs 
mainly through Ohmic dissipation, it follows, in accordance with topological consider- 
ations that field penetration through the layer will in the case R, < 0 occur, on the 
whole, faster, than for R, > 0. 

The results of the exact numerical solution allow us to define parameters character- 
izing integral properties of the B6nard layer, namely the additional ‘ convective ’ 
diffusion coefficient ,5 and the pumping-rate coefficient y. For this purpose we will 
make use of the equation of type (25) in the form 

B =  I-Z/n.  ’ 
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0 :n n 

FIGURE 3. Steady-state distribution of the averaged field B, in the BBnard layer at 
f = B,/B, c 0 ( t  = 5,  h, = 100, h,  = 10000). 

Since in this case \Rml 2 1 the equation ( 2 6 )  is obtained from (6) and ( 7 )  by means 
of simple replacement of the local values B, and V,B, by values expressed via the 
mean field values on the layer boundaries, one cannot in general exclude dependence 
of /3 and y onf (although the first terms of expansions (23) - (24)  at lRml < 1 do not 
contain such dependence). 

On the other hand, it is natural to require that when Rm changes sign, other things 
being equal, B keeps its value and remains positive (this corresponds to ,8 expansion 
in series of even powers), while y ,  preserving its absolute value, changes its sign (the 
expansion in odd power series). Then at  f fixed one obtains from ( 2 6 )  

The treatment of the exact calculation results making use of equations ( 2 7 )  permits 
evaluation of /3 and y. These results are presented in figure 4. Note that in the limits 
of our R, range ( - 5 < R, < 5 )  and computation accuracy ( N 1%) /? and y do not 
depend onf. Then as soon as @ = 0 atf = l/fst (R, > 0 ) ,  it follows from ( 2 6 )  that 

Y/(l + P )  = ( 2 / 4  (fst- l)/(fst+ 1) .  

hl = h,-n = 0 

(Note that at  hl,2 B b,  fs t  exceeds slightly (up to 8% at R, = 5 )  fst found for 

(cf. I); see figure 1.) In  the limiting case R, --f co, fst -+ co, y/(l  + P )  = 2 / n ,  and 
4 += 0, i.e. the topological pumping effect suppresses fully the field escape into vacuum. 
Obviously, a t  the external field presence (f > 0, R, > 0) the blocking of the field 
escape from the region I takes place at f = 1/fat. At f = 1 (equal fields in regions I 
and 11) the diffusion stops to work and the field transport goes on by virtue of the 
topological effect only. 

The calculations show that equation ( 2 6 )  with the coefficients P and y found above 
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Rm 

FIGURE 4. The dependence of the 'convective' diffusion coefficient /3 and the pumping 
coefficient y (see equations (25) and (26)) on R,. 

rate 

describe the field transport process at  f < 0 as well (the fields of opposite directions 
on different sides of the convective layer). 

It is of interest to clear up a t  what values of parameters (R, and f = f,) the topo- 
logical pumping compensates fully the effect of the diffusion enhancement caused by 
convective motions and, moreover, begins to suppress the magnetic field escape due 
to the initial background diffusion, i.e. when is the condition stated below satisfied? 

$/%= -gy ( f+ l ) - ( l+P) ( f - I ) /n  --(f--l)/n. (28) 

(The transport flux of the magnetic field in the presence of convection is equal to or 
smaller than the flux in absence of the convection; the equality is achieved at f = f,.) 

The results of the equation (28) solution which takes into account dependencies 
y(R,) and P(R,) are presented in figure 5.  One can see the topological pumping begins 
to suppress the field escape into the free vacuum (f, = 0 )  at R, N" 2.2. 

Since at the quasistationary regime the transport flux $ is practically constant 
across the layer, equation (15) can be integrated making use of expression (26 ) .  Then 

B, = B$,(O) = C, + C, e-at 
where 

and one can see that only at h, = h, - n the time constant of the mean field transport 
does not depend on a-effect (here a = 2(1 +/3)/nhl). On the other side, if h, -+ 00 (say, 
the field escapes from the celestial body into free space), then 

and the field escape rate into vacuum depends on the direction of the movements in 
the convective cells (i,e., on the sign of y) .  
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-0.25 1 
FIUURE 5 .  fcr, the value off = B,/B, corresponding to the exact compensation of the ‘convec- 
tive’ diffusion by the pumping effect. In  the region over the curve, the topological pumping 
makes the magnetic field escape through the convective layer to he smaller than the escape 
through the layer having no convection. 

6. Conclusion : On the transport under conditions of turbulent convection 
Calculations of magnetic field penetration through a layer with a cell structure of 

motion show the topological properties of motion to affect strongly the process. The 
effective transport properties of the Bhnard layer turn out to be asymmetrical and 
dependent on magnetic Reynolds number and its sign. 

From the equation (26) taking into account relations y(R,) and p(R,) (figure 4) 
it follows that the flux escape rate through the layer grows monotonically with I R,I 
and is maximal when the motion in the cells occurs in the direction favouring field 
escape (R, < 0 )  and the counter-field is absent a t  all. Here both the convective 
diffusion (p) enhancement and the topological pumping ( y )  are acting in one direction. 

On the contrary, a t  R, > 0 the pumping lays obstacles to  the field escape and a t  
R, > 2-2 (andf  = 0) the topological pumping action compensates fully the diffusion 
carrying-out due to convective movements, and moreover, it compensates in a con- 
siderable degree even the initial background diffusion input into the magnetic field 
transport. This compensation grows monotonically with increasing R, and, as a 
result, the magnetic field escape decreases strongly when compared with the field 
escape through a layer having no cell motions. 

These results are in contradiction with the conclusion of Parker (1975) that motion 
topology does not affect magnetic field escape rate from a turbulent gas body into 
free space and the escape rate is governed only by the diffusion coefficient D, 0.1 vl, 
where v and 1 are the velocity and the size of the dominant eddies, no matter what is 
their topology. The proved dependence of the magnetic field transport flux q4 ( = do,/&) 
on the magnitude and sign of R, caused by the topological properties of cellular motion 
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illustrates unambiguously the fundamental difference in transport properties between 
convection and turbulence. 

It is instructive also to elucidate one point related to  the value of the background 
diffusion coefficient in the presence of the topological effect in turbulized media. 
Admitting the possibility of topological action of the turbulized medium on magnetic 
field, which case was studied by Parker, one has to assume the existence of cell struc- 
ture in the presence of turbulence. I n  the limiting case these should be quasistationary 
structures. (Simple physical considerations show that in large scale thermal convec- 
tion such quasistationarity can possibly occur (Drobyshevski 1971).) Then the back- 
ground magnetic diffusivity D = 0.1 vl will be determined not by the largest scale of 
more or less stable structures but rather by the small scale of random turbulence. 
The latter will be several times smaller than the former, at a conservative estimate, 
1 5 $/b ,  v 5 +V. Hence D 5 0.01 l ib which corresponds to the effective value R, 2 30 
(we may recall that  b = n a t  L = 1) .  It would be too risky to extrapolate our results 
(available up to  R, x 5, see figure 1 )  so far; but if we do we find that at R, = 30 the 
steady-state field drop could reachf,, = lo4(!) (the field will stop escaping altogether 
if the ambient field is of the field in the body). Thus the major conclusion on the 
difference in transport of magnetic field by cell convection (the background diffusion 
coefficient is here D 5 0.01 Vb)  and random turbulence (Dt x 0.1 Vb)  finds additional 
support. 

It appears to be obvious, although it  requires further study, that in the inter- 
mediate case of nonstationary turbulent convection which has the necessary topo- 
logical structure (granulation and supergranulation on the Sun, ascension of isolated 
thermals, etc.) magnetic field transport should likewise be different, although to a 
lesser degree, from that by isotropic turbulence. 

The authors are grateful to  Professor H. K. Moffatt and Dr M. R. E. Proctor who 
suggested that the results should be expressed in the a-effect language, making the 
presentation more comprehensible and compact. 
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